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Abstract. Based on the phase-space generating functional of the Green function for a system with a
regular/singular higher-order Lagrangian, the quantal Poincaré–Cartan integral invariant (QPCII) for the
higher-order Lagrangian in field theories is derived. It is shown that this QPCII is equivalent to the quantal
canonical equations. For the case in which the Jacobian of the transformation may not be equal to unity,
the QPCII can still be derived. This case is different from the quantal first Noether theorem. The relations
between QPCII and a canonical transformation and those between QPCII and the Hamilton–Jacobi equation
at the quantum level are also discussed.

1 Introduction

Adynamical systemdescribedbyahigher-orderLagrangian
was first given by Ostrogradsky. Recently, it has attracted
much attention because higher-order derivative theories
have close relations with modern field theories, relativistic
particle dynamics, gravity theory, modified Korteweg–de
Vries (KDV) equations, supersymmetry, the string model
and other problems.

In quantum theories, the path-integral quantization can
be used as well as the formulation of canonical (operator)
quantization. The two formulations are equivalent. In the
formulation of path-integral quantization, the main ingre-
dient is the classical action together with the measure in the
space of field configurations. Thus, path integrals provide a
useful tool in the study of the symmetries at the quantum
level. The phase-space path integrals are more fundamental
than the configuration-space path integrals [1].

The classical Poincaré–Cartan integral invariant
(CPCII) plays a fundamental role in classical mechanics
and field theories. Based on CPCII, it follows that the
classical equations of motion of the dynamical system are
Hamilton canonical equations. CPCII can be treated as a
fundamental principle of a dynamical system in classical
theories [2,3]. For a regular/singular system, the CPCII is
equivalent to the classical canonical equations. CPCII has
been generalized to non-holonomic systems at the classi-
cal level [4, 5]. In addition, the CPCII for a system with
a singular Lagrangian has been studied by some authors
and some applications are also given [6–9]. However, these
investigations of the CPCII for the system are developed

a e-mail: zhangying792002@yahoo.com.cn
b e-mail: zpli@solaris.bjpu.edu.cn

at the classical level [10,11]. It needs further study whether
they hold true at the quantum level or not. The preliminary
discussion of QPCII for the system with finite degrees of
freedom has been given in [12]. However, the symbol of the
ground state still appears in those QPCII. In this paper
we shall study QPCII for the system with high-order La-
grangian in field theories, and the symbol of the ground
state will disappear.

This paper is organized as follows. In the beginning
of Sect. 2, we start this section by reviewing very briefly
the Ostrogradsky transformation for a higher-order La-
grangian. Then the QPCII for the higher-order derivative
Lagrangian in field theories is derived in which the Jaco-
bian of the transformation may not be equal to unity. The
symbol of the vacuum state of the field is eliminated. This
case is different from the quantal first Noether theorem [7].
In Sect. 3, the equivalence between QPCII and quantal
canonical equations is pointed out. In Sect. 4, the connec-
tion between the canonical transformation at the quantum
level and the QPCII is given. In Sect. 5, the Hamilton–
Jacobi equation at the quantum level derived from QPCII
is discussed. Section 6 is devoted to the conclusion, the
comparisons of the results at the quantum level and those
in classical theories are discussed.

2 The quantal Poincaré–Cartan
integral invariant

Let us first consider a system with a regular higher-order
Lagrangian described by the field variables ψα(x)(α =
1, 2, . . . , n), x = (x0, xi)(x0 = t, i = 1, 2, 3). The motion
of the field is described by a regular Lagrangian involv-
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ing higher-order derivatives of the field variables, and the
Lagrangian of the system is given by

L[ψα(0), ψ
α
(1), . . . ψ

α
(N)] =

∫
L(ψα, ψα,µ, . . . ψ

α
,µ(N))d

3x, (1)

where ψα(0) = ψα, ψα(1) = ψ̇α, . . . , ψα,µ = ∂µψ
α, ψα,µ(m) =

∂µ∂ν . . . ∂ρ︸ ︷︷ ︸
m

ψα, and V is the space domain of the field. The

flat space-time metric is gµν = (1,−1,−1,−1). Using the
Ostrogradsky transformation, one can introduce general-
ized canonical momenta:

π(N−1)
α =

δL

δψα(N)
, (2a)

π(s−1)
α =

δL

δψα(s)
− π̇(s)

α (s = 1, 2, . . . , N − 1), (2b)

or

π(s−1)
α =

N−s∑
j=0

(−1)j
dj

dtj
δL

δψα(j+s)
(s = 1, 2, . . . , N − 1),

(3)
and using these relations one can go over from the La-
grangian description to the Hamiltonian description. The
generalized canonical Hamiltonian is defined by

Hc[ψα(s), π
(s)
α ] =

∫
Hcd3x =

∫
(π(s)
α ψα(s+1) − L)d3x (4)

which may be formed by eliminating only the highest
derivatives ψα(N). A summation over the indices α from
1 to n and s from 0 to N − 1 is taken repeatedly.

The generating functional of theGreen function inphase
space for this system can be written as [7]

Z[J,K] =
∫

Dψα(s)Dπα(s) (5)

× exp
{

i
[
IP +

∫
d4x(Jsαψ

α
(s) +Kα

s π
(s)
α )

]}
,

where Ip =
∫

d4xLp =
∫

d4x(π(s)
α ψα(s+1) − Hc). Jα(x) and

Kα(x) are exterior sources with respect to the fields ψα(x)
and their canonical momenta πα(x), respectively.

We consider the space coordinates xi to be a fixed
parameter [13]. A “curve” in the phase space is defined by

ψα(s) = ψα(s)(t, θ) ,

π(s)
α = π(s)

α (t, θ), (6)

where θ is a parameter. Let us consider the infinitesimal
transformation in extended phase space which arises from
the change of the parameter θ (xi is fixed):



t → t′ = t+∆t(θ) ,
ψα(s)(t, xi) → ψ′α

(s)(t
′, xi)

= ψα(s)(t, xi) +∆ψα(s)(t, xi, θ) ,

π
(s)
α (t, xi) → π′(s)

α (t′, xi)
= π

(s)
α (t, xi) +∆π

(s)
α (t, xi, θ) ,

(7)

where θ satisfies

ψ′α
(s)(t, xi, 0) = ψα(t, xi),

π′(s)
α (t, xi, 0) = πα(t, xi). (8)

Under the transformation (7), the variation of the canon-
ical action is given by

∆Ip =
∫

d4x

(
δIP

δψα(s)
δψα(s) +

δIp

δπ
(s)
α

δπ(s)
α

)
(9)

+
∫

d4x

{
∂µ[(π(s)

α ψα(s+1) − Hc)∆xµ] +
d
dt

(π(s)
α δψα(s))

}
,

where

δIp

δψα(s)
= −π̇(s)

α − δHc

δψα(s)
,

δIp

δπ
(s)
α

= ψ̇α(s) − δHc

δπ
(s)
α

, (10)

and Hc is a generalized canonical Hamiltonian. The rela-
tions between the substantial variations δψα(s), δπ

(s)
α and

the total variations ∆ψα(s), ∆π
(s)
α are given by

δψα(s) = ∆ψα(s) − ψα(s),µ∆x
µ = ∆ψα(s) − ψα(s),0∆x

0 ,(11a)

δπ(s)
α = ∆π(s)

α − π(s)
α,µ∆x

µ = ∆π(s)
α − π

(s)
α,0∆x

0 . (11b)

Let it be supposed that the Jacobian of the transforma-
tion (7) of the field variables is given by J̄(θ) = 1 +
J1(θ)(J̄(0) = 1). The smoothed function J1(θ) can be ex-
pressedbyusing a total differential functionQ(θ) i.e.J1(θ) =
dQ(θ)/dθ. The generating function of the Green function
is invariant under the transformation (7) which can be
written as

Z[J,K] =
∫

Dψα(s)Dπ(s)
α

×
{

1 + J1 + i
∫

dx4

[(
δIP

δψα(s)
+ Jsα

)
δψα(s)

+
(
δIp

δπ
(s)
α

+Kα
s

)
δπ(s)
α

]

+ i
∫

dx4{∂µ[(π(s)
α ψα(s+1) − Hc)∆xµ]

+
d
dt

(π(s)
α δψα(s))

}

× exp
{

i
[
Ip +

∫
dx4(Jsαψ

α
(s) +Kα

s π
(s)
α )

]}
. (12)

From the invariance of the generating functional (5) under
the transformation (7), one obtains∫

Dψα(s)Dπ(s)
α

{
J1 + i

∫
dx4

[(
δIP

δψα(s)
+ Jsα

)
δψα(s)

+
(
δIp

δπα
+Kα

s

)
δπ(s)
α

]

+ i
∫

dx4{∂µ[(π(s)
α ψα(s+1) − Hc)∆xµ] +

d
dt

(π(s)
α δψα(s))}

}
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× exp
{

i
[
Ip +

∫
dx4(Jsαψ

α
(s) +Kα

s π
(s)
α )

]}
= 0. (13)

Functionally differentiating (13) with respect to Jsα, one
obtains∫

Dψα(s)Dπ(s)
α

({
iJ1 −

∫
dx4

[(
δIP

δψα(s)
+ Jsα

)
δψα(s)

+
(
δIp

δπ
(s)
α

+Kα
s

)
δπ(s)
α

]

−
∫

dx4{∂µ[(π(s)
α ψα(s+1) − Hc)∆xµ] +

d
dt

(π(s)
α δψα(s))}

}

× ψα(s)(x1) + i
∫

dx4 δ(x− x1)Nασ
s )

× exp
{

i
[
Ip +

∫
dx4(Jsαψ

α
(s) +Kα

s π
(s)
α )

]}
= 0, (14)

where
Nασ
s = δψα(s) = ∆ψα(s) − ψα(s),0∆x

0. (15)

Then, functionally differentiating (13) with respect to Jsα
a total of n times, one gets∫

Dψα(s)Dπ(s)
α

({
idQ/dθ −

∫
dx4

[(
δIP

δψα(s)
+ Jsα

)
δψα(s)

+
(
δIp

δπ
(s)
α

+Kα
s

)
δπ(s)
α

]

−
∫

dx4
{
∂µ[(π(s)

α ψα(s+1) − Hc)∆xµ]

+
d
dt

(π(s)
α δψα(s+1))

}}
× ψα(s)(x1)ψα(s)(x2) . . . ψα(s)(xn)

+ i
∑
j

ψα(s)(x1) . . . ψα(s)(xj−1)ψα(s)(xj+1) . . .

ψα(s)(xn)N
ασ
s + iNασ

s

)
(16)

× exp
{

i
[
Ip +

∫
dx4(J (s)

α ψα(s) +Kα
(s)π

(s)
α )

]}
= 0.

Let Jsα = Kα
s = 0 in (16); then one gets [14]

〈0| T ∗
[
−idQ/dθ +

∫
d4x

(
δIp

δψα(s)
δψα(s) +

δIp

δπ
(s)
α

δπ(s)
α

)]

+
∫ t2

t1

D

∫
V

d3x(π(s)
α ∆ψα(s) − Hc∆t)]ψα(s)(x1)ψα(s)(x2)

. . . ψα(s)(xn) |0〉

− i 〈0|

∑

j

ψα(s)(x1) . . . ψα(s)(xj−1)ψα(s)(xj+1)

. . . ψα(s)(xn)N
ασ
s +Nασ

s

]
|0〉 = 0, (17)

where the symbol T ∗ stands for the covariantized T product
[14], |0〉 is the vacuum state of the field,D = d

dt . From (15),

one can see that the smoothed function of θ can also be
expressed as

〈0|
∑
j

ψα(s)(x1) . . . ψα(s)(xj−1)ψα(s)(xj+1)

. . . ψα(s)(xn) ×Nασ
s |0〉 = dF (θ)/dθ, (18a)

〈0|Nασ
s |0〉 = dG(θ)/dθ. (18b)

Fixing t and letting t1, t2, . . . , tm → +∞, tm+1, tm+2, . . .,
tn → −∞, noting that ψα(s)(

⇀
x ,−∞) |0〉 = |1, in〉,

〈0|ψα(s)( ⇀
x ,∞) = 〈out, 1| and using the reduction for-

mula [14], one can write the expression (17) as

〈out,m| T ∗
[∫

d4x

(
δIp

δψα(s)
δψα(s) +

δIp

δπ
(s)
α

δπ(s)
α

)]
|out,m〉

+ 〈out,m|
[∫

V

d3x
(
π(s)
α ∆ψα(s) − Hc∆t

)]
|n−m, in〉|t1

− 〈out,m|
[∫

V

d3x
(
π(s)
α ∆ψα(s) − Hc∆t

)]
|n−m, in〉|t2

= i
{
dF/dθ + dG/dθ + 〈out,m| dQ/dθ |n−m, in〉}. (19)

Let C1 be any simple closed curve encircling the tube of
quantal dynamical trajectories in extended phase space.
θ = 0 and θ = l are same points on C1. Through any point
on C1, there is a dynamical trajectory of the motion. The
dynamical trajectories through points on C1 form a tube of
trajectories. Choose another closed curve C2 on this tube
of trajectories such that it encircles this tube and intersects
the generatrix of the tube only once. Taking the integral
of the expression (19) with respect to θ along curves C1
and C2[2], one has∮
c1

〈out,m|T ∗
[∫

V

d3x
(
π(s)
α ∆ψα(s)−Hc∆t

)]
|n−m, in〉 |t1

−
∮
c2

〈out,m|T ∗
[∫

V

d3x
(
π(s)
α ∆ψα(s)−Hc∆t

)]
|n−m, in〉 |t2

+
∮
c

〈out,m|T ∗
[∫

d4x

(
δIp

δψα(s)
δψα(s) +

δIp

δπ
(s)
α

δπ(s)
α

)]
(20)

|n−m, in〉
= i

∮
ck

{[dF/dθ + dG/dθ] + 〈out,m| dQ/dθ |n−m, in〉}.

Since θ = 0 and θ = l are same points on the closed curve,
along those closed curves, the integral of the right-hand
side of (20) must be equal to zero. Due to m and n being
arbitrary, we have∮

c1

T ∗
[∫

V

d3x
(
π(s)
α ∆ψα(s) − Hc∆t

)]

−
∮
c2

T ∗
[∫

V

d3x
(
π(s)
α ∆ψα(s) − Hc∆t

)]
(21)

+
∮
c

T ∗
[∫

d4x

(
δIp

δψα(s)
δψα(s) +

δIp

δπ
(s)
α

δπ(s)
α

)]
= 0.
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Now, we deduce the quantum canonical equations for this
system, since〈
ψ′α

(s), t
′
∣∣∣ δIp

δψα(s)

∣∣∣ψα(s), t〉 =
∫

Dψα(s)Dπ(s)
α

δIp

δψα(s)
exp

{
iIP

}
,

(22a)〈
ψ′α

(s), t
′
∣∣∣ δIp
δπ

(s)
α

∣∣∣ψα(s), t〉 =
∫

Dψα(s)Dπ(s)
α

δIp

δπ
(s)
α

exp
{
iIP

}
(22b)

for the arbitrary state
∣∣∣ψ′α

(s), t
′
〉

and
∣∣∣ψα(s), t〉, from the

classical canonical equations ( δIp

δψα
(s)

= 0, δIp

δπ
(s)
α

= 0), the

right-hand side of (22) is equal to zero; thus one can obtain

〈
ψ′α, t′

∣∣ δIp

δψα(s)
|ψα, t〉 =

〈
ψ′α, t′

∣∣ δIp
δπ

(s)
α

|ψα, t〉 = 0. (23)

Due to
∣∣ψ′α, t′

〉
and |ψα, t〉being arbitrary, the quantumdy-

namical trajectories are determined by the following quan-
tal canonical equations:

δIp

δψα(s)
= 0,

δIp

δπ
(s)
α

= 0. (24)

Using the quantal canonical equations (24), from (21), one
has

W = T ∗
∮
c

∫
V

d3x(π(s)
α ∆ψα(s) − Hc∆t) = inv. (25)

Therefore, with an arbitrary displacement and the defor-
mation of the closed curve C along any tube of those dy-
namical trajectories, the integral W along the closed curve
C is invariant. Equation (25) is called the QPCII for a
regular higher-order Lagrangian in field theories and the
expression W is a Poincaré–Cartan (PC) integral.

For a system with a singular higher-order Lagrangian,
let Λk(t, ψα(s), π

(s)
α ) ≈ 0(k = 1, 2, . . . , a) be first-class con-

straints, and let θi(t, ψα(s), π
(s)
α ) ≈ 0(i = 1, 2, . . . , b) be

second-class constraints. The gauge conditions connecting
with the first-class constraints are

Ωl(t, ψα(s), π
(s)
α ) ≈ 0 (l = 1, 2, . . . , a) .

According to the Faddeeve–Senjanovic path-integral quan-
tization scheme, the phase-space generating function of the
Green function for the singular higher-order Lagrangian is
given by [7]

Z[J,K] =
∫

Dψα(s)Dπ(s)
α

∏
i,k,l

δ(θi)δ(Λk)δ(Ωl)

× det |{Λk, Ωl}| [det |{θi, θj}|]1/2 (26)

× exp
{

i
[
IP +

∫
d4x(Jsαψ

α
(s) +Kα

s π
(s)
α )

]}
.

Using the properties of the δ-function and the integral
properties of the Grassmann variables Ca(x) and C̄a(x),
the expression (26) can be written as

Z[J,K, ηm, j̄, k̄, j, k]

=
∫

Dψα(s)Dπ(s)
α DλmDC̄aDπaDCaDπ̄a

× exp
{

i
∫

d4x(LPeff + Jsαψ
α
(s) (27)

+ Kα
s π

(s)
α + ηmλm + j̄aCa + C̄aj

a + k̄aπ
a + π̄aka)

}
,

where

LPeff = LP + Lm + Lgh, (28)

Lp = π(s)
α ψα(s+1) − Hc, (29)

Lm = λiθi + λkΛk + λlΩl, (30)

Lgh =
∫

d3y
[
C̄k(x){Λk(x), Ωl(y)}Cl(y)

+
1
2
C̄

(
ix){θi(x), θj(y)}Cj(y)

]
, (31)

and λm = (λk, λi, λl), λk and λi and λl are multiplier fields
connected with the constraints Λk,θi and Ωl,respectively.
π̄a(x) and πa(x) are canonical momenta conjugate toCa(x)
and C̄a(x), respectively; here we have introduced the exte-
rior sources ηm,j̄a, k̄a, ja and ka with respect to the fields
λm, Ca, πa, C̄a and π̄a, respectively. Thus, it is easy to
see that the quantal canonical equations are determined
by Heff = π

(s)
α ψ̇α(s) − Lpeff for the system with a singular

Lagrangian. Hence, we can still proceed in the same way
to obtain the QPCII for the system with a singular higher-
order Lagrangian in which the Jacobian of the transforma-
tion (7) may not be equal to unity. But in the result for this
case, one must use Heff instead of Hc in expression (25):

W ′ = T ∗
∮
c

∫
V

d3x(π(s)
α ∆ψα(s) − Heff∆t) = inv. (32)

The closed curves must satisfy all the constraint conditions.
Thus, we obtain that the QPCII for the singular higher-
order Lagrangian can also be derived when we use the
effective action Ipeff instead of Ip.

3 Quantal PC integral invariant
and quantal canonical equations

In classical theories, it has been proved that CPCII is equiv-
alent to the classical motion equations [7, 10, 11]. In this
section, we can show that this equivalent relation at the
quantum level still holds true. Now we study the inver-
sion problem of Sect. 2, i.e. the quantal motion equations
can be derived from the QPCII for the system with regu-
lar/singular higher-order Lagrangian.

Now, we first consider the discrete regular system. We
can divide the space domain V into a very large number
of small cells and use ∆Vi to denote the volume of the ith
cell; ψα(s)i, the average of the variables ψα(s)(x) on ∆Vi, and

p
(s)i
α (t), the canonical momenta conjugate to ψα(s)i. Thus,

p
(s)i
α (t) = π

(s)i
α ∆Vi (not summing over i). In this way the
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discrete case for expression (25) can be written as

W = T ∗
∮
c

(p(s)i
α ∆ψα(s)i −Hc∆t) = inv. (33)

When ∆Vi → 0,ψα(s)i(t) → ψα(s)(x, t), π
(s)i
α (t) → π

(s)
α (x, t),

the continuous limit of (33) converts into expression (25)
(or (32)). Using this result, it is easy to extend the con-
clusion of the discrete system to the system in the field
theories [6].

Let us first consider the quantal equations of motion of
the discrete regular Lagrangian in the phase space which
is given by [3]. (Similar to the analysis of (22)–(24), the
operators can be converted to classical numbers.) We have

ψ̇α(s)i =
dψα(s)i

dt
= Qα(s)i(t, ψ

α
(s)i, p

(s)i
α ),

ṗ(s)i
α =

dp(s)i
α

dt
= P (s)i

α (t, ψα(s)i, p
(s)i
α ). (34)

From (25), we can obtain

0 =
d
dt
W ′

=
∮
c

(
dp(s)i

α

dt
∆ψα(s)i + p(s)i

α

d
dt
∆ψα(s)i − dHc

dt
∆t−Hc

d
dt
∆t

)

=
∮
c

[
dp(s)i

α

dt

(
δψ(s)i

α + ψ̇α(s)i∆x
0
)

+ p(s)i
α

d
dt

(δψ(s)i
α + ψ̇α(s)i∆x

0) − dHc

dt
∆t

]
. (35)

Integrating by parts the terms in (35), one obtains

0 =
∮
c

[
dp(s)i

α

dt
δψα(s)i + p(s)i

α δ
d
dt
ψα(s)i − dHc

dt
∆t

]

=
∮
c

[
dp(s)i

α

dt
δψα(s)i −

dψα(s)i
dt

δp(s)i
α − dHc

dt
δt

]
= 0. (36)

From (34), one obtains∮
c

[
P (s)i
α δψα(s)i −Qα(s)iδp

(s)i
α − dHc

dt
δt

]
= 0. (37)

Due to the contour of the integrating being arbitrary, and
the integrand being the variation of the quantity
−Hc(t, ψα(s)i, p

(s)i
α ),

P (s)i
α δψα(s)i −Qα(s)iδp

(s)i
α − dHc

dt
δt = −δHc(t, ψα(s)i, p

(s)i
α ).

(38)
Thus

P (s)i
α = − ∂Hc

∂ψα(s)i
, Qα(s)i =

∂Hc

∂p
(s)i
α

. (39)

This is to say that the equivalence between the quantal
canonical equations and the QPCII is proved for the regular
higher-order Lagrangian.

One can still proceed in the same way to obtain the
equivalence between the quantal canonical equations and
the QPCII for the system with a singular higher-order La-
grangian.But in this case, (ψα(s)i, C

i
a, C̄

i
a, η

m
i ) and (p(s)i

α , pai , p̄
a
i )

should be used instead of ψα(s)i and p(s)i
α , and Heff should

be used instead of Hc.
From the above discussion we can show that a necessary

and sufficient condition for the equations of motion to be
quantal canonical equations is that the PC integral be
invariant at the quantum level.

When ∆Vi → 0, the continuous limit of (39) converts
into (24); thus the equivalence between the QPCII and the
quantal canonical equations of the discrete system can be
extended to a system with a higher-order Lagrangian in
the field theories.

4 The quantal PCII
and the canonical transformation

The canonical transformation in field theories can be stated
as follows. Suppose the equations of motion of a dynam-
ical system are given by (24). Then the canonical trans-
formation at the quantum level is to be defined as such
a transformation of the canonical variables ψα(s),π

(s)
α . We

have

ψα∗
(s) = Q′α

(s)(t, ψ
α
(s), π

(s)
α ),

π(s)∗
α = P ′(s)

α (t, ψα(s), π
(s)
α ), (40)

which leaves the form of (24) of the system invariant. Under
the transformation (40), if two quantities H∗

c =
∫
V

d3xH∗
c

(for the system with a singular Lagrangian, Heff should be
used instead of Hc) and G exist so that∫

V

d3x(π(s)
α ∆ψα(s) − Hc∆t)

=
∫
V

d3x(π(s)∗
α ∆ψα∗

(s) − H∗
c∆t) +∆G. (41)

Then the transformation is canonical at the quantum level.
In fact, one can choose a closed curve in the extended phase
space, and from (41) one can obtain∮

c

[∫
V

d3x
(
π(s)
α ∆ψα(s) − Hc∆t

)
−
∫
V

d3x(π(s)∗
α ∆ψα∗

(s) − H∗
c∆t)

]
= 0. (42)

If C∗ is the closed curve obtained from C by means of the
transformation (40), then (42) can be written as∮

c

∫
V

d3x(π(s)
α ∆ψα(s) − Hc∆t)

=
∮
c′′

∫
V

d3x(π(s)∗
α ∆ψα∗

(s) − H∗
c∆t)]. (43)
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Because the ψα(s) and π(s)
α satisfy the equations of motion

(24), the left-hand side of (43) is QPCII at the quantum
level, i.e. the left-hand side of (43) is invariant under the
displacement and deformation of the closed curve C along
the tube of the dynamical trajectories given by the so-
lution of (24). Therefore, the right-hand side of (43) will
be invariant under the displacement of the closed curve
C∗ along the tube obtained by means of the transforma-
tion (40). That is to say, the right-hand side of (43) is also
a QPCII at the quantum level with respect to the trans-
formed new variables. Thus, the transformed trajectories
must satisfy the quantal canonical equations for the system
with a higher-order Lagrangian in field theories, and there-
fore, the transformation (40) is canonical at the quantum
level [6].

5 Hamilton–Jacobi equations

Now we discuss the connection between the QPCII and
the Hamilton–Jacobi equation at the quantum level. From
the analysis in Sect. 3, the discrete case for expression (43)
can be written as∮
c

(pi(s)α ∆ψαi(s)−Hc∆t) =
∮
c∗

(pi(s)∗α ∆ψα∗
i(s)−H∗

c∆t). (44)

A smoothed function of θ can be expressed as

Λ(θ) =
dS(ψαi(s), ψ

α∗
i(s), t)

dt
∆t(θ) =

dΩ(θ)
dθ

. (45)

The integral of Λ(θ) along the closed curve C∗ must be
equal to zero, so (45) can be added to the right of (44):∮
c

(pi(s)α ∆ψαi(s) −Hc∆t) (46)

=
∮
c∗

(pi(s)∗α ∆ψα∗
i(s)−H∗

c∆t) +
∮
c∗

(
dS(ψαi(s), ψ

α∗
i(s), t)

dt

)
∆t.

Due to C and C∗ being arbitrary closed curves encircling
the tube of quantal dynamical trajectories in extended
phase space, we have

pi(s)α ∆ψαi(s) − pi(s)∗α ∆ψ∗
i(s)

−
(
Hc −H∗

c +
dS(ψαi(s), ψ

α∗
i(s), t)

dt

)
∆t = 0. (47)

Thus, from (43) (similar to the analysis of (22)–(24), the
operators can be converted to classical numbers) we have(

pi(s)α −
∂S(ψαi(s), ψ

α∗
i(s), t)

∂ψαi(s)

)
∆ψαi(s)

−
(
pi(s)∗α +

∂S(ψαi(s), ψ
α∗
i(s), t)

∂ψα∗
i(s)

)
∆ψα∗

i(s)

+

[
H∗

c −
(
Hc +

∂S(ψαi(s), ψ
α∗
i(s), t)

∂t

)]
∆t = 0. (48)

Since ∆ψαi(s) and ∆ψα∗
i(s) are independent, one obtains

pi(s)α =
∂S(ψαi(s), ψ

α∗
i(s), t)

∂ψαi(s)
,

−pi(s)∗α =
∂S(ψαi(s), ψ

α∗
i(s), t)

∂ψα∗
i(s)

, (49)

H∗
c = Hc +

∂S(ψαi(s), ψ
α∗
i(s), t)

∂t
. (50)

Selecting an S and making H∗
c = 0, the relation (50) gives

Hc

[
ψαi(s),

∂S

∂ψαi(s)
, t

]
+
∂S(ψαi(s), ψ

α∗
i(s), t)

∂t
= 0. (51)

This is the Hamilton–Jacobi equation at the quantum level.
In this case, the equations of motion become simple because
of H∗

c = 0, since

ψ̇α∗
i(s) =

∂H∗
c

∂p
i(s)
α

= 0. (52)

Thus
ψα∗
i(s) = const. (53)

The S can easily be interpreted after taking the total time
derivative:

dS(ψαi(s), ψ
α∗
i(s), t)

dt

=
∂S(ψαi(s), ψ

α∗
i(s), t)

∂ψαi(s)
ψ̇αi(s) +

∂S(ψαi(s), ψ
α∗
i(s), t)

∂t

= pi(s)α ψ̇αi(s) −Hc, (54)

then
S(ψαi(s), ψ

α∗
i(s), t) =

∫
Lpdt+ γ; (55)

γ is an arbitrary constant. For the system with the singular
higher-order Lagrangian, Heff can be used instead of Hc
and then Lpeff can be used instead of Lp.

When ∆Vi → 0, the above analysis can be extended
to the system with a higher-order Lagrangian in the field
theories.

6 Discussion and conclusions

Considering the transformation property of phase-space
generating function of the Green function, along the quan-
tal motion trajectories, the QPCII for a system with a
regular/singular higher-order Lagrangian in field theories
is derived. It is proved that the QPCII is equivalent to the
quantal canonical equations; thus the CPCII is general-
ized to field theories at the quantum level. For the singular
Lagrangian system, the QPCII should be determined by
the effective Hamiltonian Heff (not the canonical Hamilto-
nian Hc), and the Heff involves all constraints and gauge
conditions. This is different from all classical theories. In
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classical theories, the expressions of PCII for a regular
system and a singular system are completely similar. The
differences are that the variations of the canonical variables
for a system with a regular Lagrangian are arbitrary; but
for the system with a singular Lagrangian, those variations
are restricted by the constraint conditions (the constraint
conditions should be invariant under a substantial vari-
ation). The expressions of QPCII for the system with a
regular Lagrangian and singular Lagrangian are similar
when ∆t = 0 at the quantum level.

The conserved quantities corresponding to the classical
symmetries perhaps do not exist at the quantum level. For
example, in the Noether theorem at the quantum level,
due to the existence of the constraints for a system with
a singular Lagrangian in the phase space, the effective
Hamiltonian Heff is different from the canonical one Hc,
and the Jacobian of the transformation may not be equal
to unity; thus, the relations between classical symmetries
and conservation laws not always are preserved in quantum
theories [7]. However, the quantal conserved quantities can
be obtained if the effective canonical action is invariant
under the global transformation in phase space and the
Jacobian of the corresponding local transformation is equal
to unity [7]. In general, there is a quantum anomaly when
the Jacobian of the transformation is not equal to unity.
But this case does not occur for the QPCII. Even if the
Jacobian of the transformation is not equal to unity, the
QPCII can also be derived. This case is different from the
quantal first Noether theorem [7]. The cause arises from the
equivalence between the QPCII and the quantal canonical
equations. The Hamilton–Jacobi equation can be derived
from QPCII at the quantum level.

Recently, the geometric description of symmetries in
classical field theory has been formulated [15]. The exten-
sion of some results in the above work [15] to quantum
theory from the point of view of the ideas developed in
this paper needs further discussion.
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